With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.

Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel / Faccinetto C.; Sabbatini D.; Serventi P.; Rigato M.; Salvoro C.; Casamassima G.; Margiotta G.; De Fanti S.; Sarno S.; Staiti N.; Luiselli D.; Marino A.; Vazza G.. - In: INTERNATIONAL JOURNAL OF LEGAL MEDICINE. - ISSN 0937-9827. - STAMPA. - 135:6(2021), pp. 2295-2306. [10.1007/s00414-021-02686-w]

Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel

De Fanti S.;Sarno S.;Luiselli D.;
2021

Abstract

With the recent advances in next-generation sequencing (NGS), mitochondrial whole-genome sequencing has begun to be applied to the field of the forensic biology as an alternative to the traditional Sanger-type sequencing (STS). However, experimental workflows, commercial solutions, and output data analysis must be strictly validated before being implemented into the forensic laboratory. In this study, we performed an internal validation for an NGS-based typing of the entire mitochondrial genome using the Precision ID mtDNA Whole Genome Panel (Thermo Fisher Scientific) on the Ion S5 sequencer (Thermo Fisher Scientific). Concordance, repeatability, reproducibility, sensitivity, and heteroplasmy detection analyses were assessed using the 2800 M and 9947A standard control DNA as well as typical casework specimens, and results were compared with conventional Sanger sequencing and another NGS sequencer in a different laboratory. We discuss the strengths and limitations of this approach, highlighting some issues regarding noise thresholds and heteroplasmy detection, and suggesting solutions to mitigate these effects and improve overall data interpretation. Results confirmed that the Precision ID Whole mtDNA Genome Panel is highly reproducible and sensitive, yielding useful full mitochondrial DNA sequences also from challenging DNA specimens, thus providing further support for its use in forensic practice.
2021
Internal validation and improvement of mitochondrial genome sequencing using the Precision ID mtDNA Whole Genome Panel / Faccinetto C.; Sabbatini D.; Serventi P.; Rigato M.; Salvoro C.; Casamassima G.; Margiotta G.; De Fanti S.; Sarno S.; Staiti N.; Luiselli D.; Marino A.; Vazza G.. - In: INTERNATIONAL JOURNAL OF LEGAL MEDICINE. - ISSN 0937-9827. - STAMPA. - 135:6(2021), pp. 2295-2306. [10.1007/s00414-021-02686-w]
Faccinetto C.; Sabbatini D.; Serventi P.; Rigato M.; Salvoro C.; Casamassima G.; Margiotta G.; De Fanti S.; Sarno S.; Staiti N.; Luiselli D.; Marino A.; Vazza G.
File in questo prodotto:
File Dimensione Formato  
Faccinetto2021_Article.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 906.19 kB
Formato Adobe PDF
906.19 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/838776
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact