Inspired by recent works in computational systems biology and existing literature proposing nature-inspired approaches for the coordination of today complex distributed systems, this paper proposes a mechanism to leverage exact computational modelling of chemical reactions for achieving self-organisation in system coordination. We conceive the notion of biochemical tuple spaces. In this model: a tuple resembles a chemical substance, a notion of activity/pertinency value for tuples is used to model chemical concentration, coordination rules are structured as chemical reactions evolving tuple concentration over time, a tuple space resembles a single-compartment solution, and finally a network of tuple spaces resembles a tissue-like biological system. The proposed model is formalised as a process algebra with stochastic semantics, and several examples are described up to an ecology-inspired scenario of system coordination, which emphasises the self-organisation features of the proposed model.

M. Viroli, M. Casadei (2009). Biochemical Tuple Spaces for Self-Organising Coordination [10.1007/978-3-642-02053-7_8].

Biochemical Tuple Spaces for Self-Organising Coordination

VIROLI, MIRKO;CASADEI, MATTEO
2009

Abstract

Inspired by recent works in computational systems biology and existing literature proposing nature-inspired approaches for the coordination of today complex distributed systems, this paper proposes a mechanism to leverage exact computational modelling of chemical reactions for achieving self-organisation in system coordination. We conceive the notion of biochemical tuple spaces. In this model: a tuple resembles a chemical substance, a notion of activity/pertinency value for tuples is used to model chemical concentration, coordination rules are structured as chemical reactions evolving tuple concentration over time, a tuple space resembles a single-compartment solution, and finally a network of tuple spaces resembles a tissue-like biological system. The proposed model is formalised as a process algebra with stochastic semantics, and several examples are described up to an ecology-inspired scenario of system coordination, which emphasises the self-organisation features of the proposed model.
2009
143
162
M. Viroli, M. Casadei (2009). Biochemical Tuple Spaces for Self-Organising Coordination [10.1007/978-3-642-02053-7_8].
M. Viroli; M. Casadei
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/83860
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 41
social impact