In future health-care systems, wearable/implantable devices are foreseen as strong breakthroughs to allow patients home monitoring, enabling better life and more sustainable health care systems. Although electronics for implantable sensors are relatively mature, ensuring the energy to reliably operate with these devices is still missing. The Research Project of National Relevance (PRIN) WPT4WID (Wireless Power Transfer for Wearable and Implantable Devices) is focused on the development of innovative solutions for wireless power transfer applications. The research has specific concerns to the trustworthiness and medical compliance of the implementations, searching for the best trade-off among miniaturization, energy transfer efficiency, and safety. This main goal is achieved through a multidisciplinary approach able to efficiently model and characterize the devices and the wireless channel as a whole, for both near-field resonant and far-field radiative coupling mechanisms.

Wireless Power Transfer for Wearable and Implantable Devices: A Review Focusing on the WPT4WID Research Project of National Relevance

Costanzo A.;Barbiroli M.;Benassi F.;Masotti D.;Paolini G.;
2021

Abstract

In future health-care systems, wearable/implantable devices are foreseen as strong breakthroughs to allow patients home monitoring, enabling better life and more sustainable health care systems. Although electronics for implantable sensors are relatively mature, ensuring the energy to reliably operate with these devices is still missing. The Research Project of National Relevance (PRIN) WPT4WID (Wireless Power Transfer for Wearable and Implantable Devices) is focused on the development of innovative solutions for wireless power transfer applications. The research has specific concerns to the trustworthiness and medical compliance of the implementations, searching for the best trade-off among miniaturization, energy transfer efficiency, and safety. This main goal is achieved through a multidisciplinary approach able to efficiently model and characterize the devices and the wireless channel as a whole, for both near-field resonant and far-field radiative coupling mechanisms.
2021 34th General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2021
1
4
Costanzo A.; Apollonio F.; Baccarelli P.; Barbiroli M.; Benassi F.; Bozzi M.; Burghignoli P.; Campi T.; Cruciani S.; DI Meo S.; Feliziani M.; Fuscaldo W.; Galli A.; Liberti M.; Maradei F.; Marracino P.; Masotti D.; Paolini G.; Pasian M.; Perregrini L.; Schettini G.; Silvestri L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/837910
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact