This work aims at enabling the fabrication of a new generation of prosthetic components with enhanced mechanical behaviour and an extended lifetime. Cobalt‑chromium lattice structures manufactured using laser powder bed fusion are analysed to quantify the influence of microstructural anisotropy and geometrical deviations on stiffness prediction. Results of the experimental campaign are used to improve finite-element modelling of the mechanical behaviour of functionally graded lattice structures. The proposed method, which can be extended to any lattice structure fabricated by laser powder bed fusion, is then used to redesign an ankle prosthetic component.

Liverani E., Zanini F., Tonelli L., Carmignato S., Fortunato A. (2021). The influence of geometric defects and microstructure in the simulation of the mechanical behaviour of laser powder-bed fusion components: Application to endoprosthesis. JOURNAL OF MANUFACTURING PROCESSES, 71(11), 541-549 [10.1016/j.jmapro.2021.09.043].

The influence of geometric defects and microstructure in the simulation of the mechanical behaviour of laser powder-bed fusion components: Application to endoprosthesis

Liverani E.
;
Tonelli L.;Fortunato A.
2021

Abstract

This work aims at enabling the fabrication of a new generation of prosthetic components with enhanced mechanical behaviour and an extended lifetime. Cobalt‑chromium lattice structures manufactured using laser powder bed fusion are analysed to quantify the influence of microstructural anisotropy and geometrical deviations on stiffness prediction. Results of the experimental campaign are used to improve finite-element modelling of the mechanical behaviour of functionally graded lattice structures. The proposed method, which can be extended to any lattice structure fabricated by laser powder bed fusion, is then used to redesign an ankle prosthetic component.
2021
Liverani E., Zanini F., Tonelli L., Carmignato S., Fortunato A. (2021). The influence of geometric defects and microstructure in the simulation of the mechanical behaviour of laser powder-bed fusion components: Application to endoprosthesis. JOURNAL OF MANUFACTURING PROCESSES, 71(11), 541-549 [10.1016/j.jmapro.2021.09.043].
Liverani E.; Zanini F.; Tonelli L.; Carmignato S.; Fortunato A.
File in questo prodotto:
File Dimensione Formato  
Liverani_The influence of geometric defects and microstructure.pdf

Open Access dal 06/10/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/837759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact