Stainless steel (SS) alloys produced by laser-based powder bed fusion (LPBF) offers comparable and sometime superior mechanical properties compared to conventionally processed materials. Some of these steels have been extensively studied over the last decade; however additively manufactured martensitic SS, such as AISI 420, need further research in characterizing their post-built quality and mechanical behaviour. This lack of information on martensitic SS is not consistent with their growing demand in the automotive, medical and aerospace industries due to their good corrosion resistance, high hardness and good tensile properties. Selection of the appropriate process parameters and post treatments plays a fundamental role in determining final properties. For this reason, the effect of LPBF process parameters and different heat treatments on density, defect characteristics and locations, roughness and mechanical properties of AISI 420 were investigated in this paper. A first experimental campaign was carried out to establish a set of suitable process parameters for industrial applications. Starting from this result, detected defect properties were investigated by computed tomography (CT) scans. Dimensions, sphericity and distributions of defects inside the volume were analysed and compared between samples manufactured with different parameters. In the second part of the paper, the influence of process and post-process conditions on mechanical properties was investigated. The final presented results establish a correlation between the employed production cycle and the resulting properties of LPBF AISI 420 specimens.
Liverani E., Fortunato A. (2021). Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in different process and post-process conditions. INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY, 117(3), 809-821 [10.1007/s00170-021-07639-6].
Additive manufacturing of AISI 420 stainless steel: process validation, defect analysis and mechanical characterization in different process and post-process conditions
Liverani E.
;Fortunato A.
2021
Abstract
Stainless steel (SS) alloys produced by laser-based powder bed fusion (LPBF) offers comparable and sometime superior mechanical properties compared to conventionally processed materials. Some of these steels have been extensively studied over the last decade; however additively manufactured martensitic SS, such as AISI 420, need further research in characterizing their post-built quality and mechanical behaviour. This lack of information on martensitic SS is not consistent with their growing demand in the automotive, medical and aerospace industries due to their good corrosion resistance, high hardness and good tensile properties. Selection of the appropriate process parameters and post treatments plays a fundamental role in determining final properties. For this reason, the effect of LPBF process parameters and different heat treatments on density, defect characteristics and locations, roughness and mechanical properties of AISI 420 were investigated in this paper. A first experimental campaign was carried out to establish a set of suitable process parameters for industrial applications. Starting from this result, detected defect properties were investigated by computed tomography (CT) scans. Dimensions, sphericity and distributions of defects inside the volume were analysed and compared between samples manufactured with different parameters. In the second part of the paper, the influence of process and post-process conditions on mechanical properties was investigated. The final presented results establish a correlation between the employed production cycle and the resulting properties of LPBF AISI 420 specimens.File | Dimensione | Formato | |
---|---|---|---|
Liverani-Fortunato2021_Article_AdditiveManufacturingOfAISI420.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.27 MB
Formato
Adobe PDF
|
2.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.