The paper studies the cheap spectral factorization problem in the state space from a strictly geometric viewpoint. A new solution based on the geometric properties of the related Hamiltonian system corresponding to a standard cheap LQ, is proposed and the connection between the H2-optimal model following and the spectral factorization problems is pointed out. A numerical example illustrates the theory and shows the effectiveness of the proposed solution.

G. Marro, F. Morbidi, D. Prattichizzo (2009). A geometric solution to the cheap spectral factorization problem. s.l : s.n.

A geometric solution to the cheap spectral factorization problem

MARRO, GIOVANNI;
2009

Abstract

The paper studies the cheap spectral factorization problem in the state space from a strictly geometric viewpoint. A new solution based on the geometric properties of the related Hamiltonian system corresponding to a standard cheap LQ, is proposed and the connection between the H2-optimal model following and the spectral factorization problems is pointed out. A numerical example illustrates the theory and shows the effectiveness of the proposed solution.
2009
Proceedings of the European Control Conference 2009
814
819
G. Marro, F. Morbidi, D. Prattichizzo (2009). A geometric solution to the cheap spectral factorization problem. s.l : s.n.
G. Marro; F. Morbidi; D. Prattichizzo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/83662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact