Priming for luminance-modulated (first-order) motion has been shown to rely on the functional integrity of visual area V5/MT [Campana, G., Cowey, A., & Walsh, V. (2002). Priming of motion direction and area V5/MT: A test of perceptual memory. Cerebral Cortex, 12, 663-669; Campana, G., Cowey, A., & Walsh, V. (2006). Visual area V5/MT remembers "what" but not "where". Cerebral Cortex, 16, 1766-1770]. The high retinotopical organization of this area would predict that direction priming is sensitive to spatial position. In order to test this hypothesis, and to see whether a similar priming mechanism also exists with second-order motion, we tested motion direction priming and its interaction with spatial position with both first- and second-order motion. Indeed, whereas a number of studies have pinpointed the specific mechanisms and neural substrates for these two kinds of motion perception that appear to be (partially) non-overlapping (i.e., Lu, Z. L., & Sperling, G. (2001). Three-systems theory of human visual motion perception: Review and update. Journal of the Optical Society of America A, 18, 2331-2370; Vaina, L. M., & Soloviev, S. (2004). First-order and second-order motion: Neurological evidence for neuroanatomically distinct systems. Progress in Brain Research, 144, 197-212), the mechanisms and neural substrates mediating implicit memory for first- and second-order motion are still unknown. Our results indicate that priming for motion direction occurs not only with first-order but also with second-order motion. Priming for motion direction is position-sensitive both with first- and second-order motion, suggesting for both processes a locus of representation where retinotopicity is still maintained, that is within the V5/MT complex but earlier than MST. Cross-order motion priming also exists but is not sensitive to spatial position, suggesting that the locus where processing of first- and second-order motion converge is situated in MST or beyond. © 2007 Elsevier Ltd. All rights reserved.

Campana G., Pavan A., Casco C. (2008). Priming of first- and second-order motion: Mechanisms and neural substrates. NEUROPSYCHOLOGIA, 46(2), 393-398 [10.1016/j.neuropsychologia.2007.07.019].

Priming of first- and second-order motion: Mechanisms and neural substrates

Pavan A.;
2008

Abstract

Priming for luminance-modulated (first-order) motion has been shown to rely on the functional integrity of visual area V5/MT [Campana, G., Cowey, A., & Walsh, V. (2002). Priming of motion direction and area V5/MT: A test of perceptual memory. Cerebral Cortex, 12, 663-669; Campana, G., Cowey, A., & Walsh, V. (2006). Visual area V5/MT remembers "what" but not "where". Cerebral Cortex, 16, 1766-1770]. The high retinotopical organization of this area would predict that direction priming is sensitive to spatial position. In order to test this hypothesis, and to see whether a similar priming mechanism also exists with second-order motion, we tested motion direction priming and its interaction with spatial position with both first- and second-order motion. Indeed, whereas a number of studies have pinpointed the specific mechanisms and neural substrates for these two kinds of motion perception that appear to be (partially) non-overlapping (i.e., Lu, Z. L., & Sperling, G. (2001). Three-systems theory of human visual motion perception: Review and update. Journal of the Optical Society of America A, 18, 2331-2370; Vaina, L. M., & Soloviev, S. (2004). First-order and second-order motion: Neurological evidence for neuroanatomically distinct systems. Progress in Brain Research, 144, 197-212), the mechanisms and neural substrates mediating implicit memory for first- and second-order motion are still unknown. Our results indicate that priming for motion direction occurs not only with first-order but also with second-order motion. Priming for motion direction is position-sensitive both with first- and second-order motion, suggesting for both processes a locus of representation where retinotopicity is still maintained, that is within the V5/MT complex but earlier than MST. Cross-order motion priming also exists but is not sensitive to spatial position, suggesting that the locus where processing of first- and second-order motion converge is situated in MST or beyond. © 2007 Elsevier Ltd. All rights reserved.
2008
Campana G., Pavan A., Casco C. (2008). Priming of first- and second-order motion: Mechanisms and neural substrates. NEUROPSYCHOLOGIA, 46(2), 393-398 [10.1016/j.neuropsychologia.2007.07.019].
Campana G.; Pavan A.; Casco C.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/835907
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact