We present some explicit formulas for solutions to nonhomogeneous boundary value problems involving any positive power of the Laplacian in the half-space. For non-integer powers the operator becomes nonlocal and this requires a suitable extension of Dirichlet-type boundary conditions. A key ingredient in our proofs is a point inversion transformation which preserves har-monicity and allows us to use known results for the ball. We include uniqueness statements, regularity estimates, and describe the growth or decay of solutions at infinity and at the boundary.

Abatangelo N., Dipierro S., Fall M.M., Jarohs S., Saldana A. (2019). Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 39(3), 1205-1235 [10.3934/dcds.2019052].

Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions

Abatangelo N.;
2019

Abstract

We present some explicit formulas for solutions to nonhomogeneous boundary value problems involving any positive power of the Laplacian in the half-space. For non-integer powers the operator becomes nonlocal and this requires a suitable extension of Dirichlet-type boundary conditions. A key ingredient in our proofs is a point inversion transformation which preserves har-monicity and allows us to use known results for the ball. We include uniqueness statements, regularity estimates, and describe the growth or decay of solutions at infinity and at the boundary.
2019
Abatangelo N., Dipierro S., Fall M.M., Jarohs S., Saldana A. (2019). Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 39(3), 1205-1235 [10.3934/dcds.2019052].
Abatangelo N.; Dipierro S.; Fall M.M.; Jarohs S.; Saldana A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/835035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact