We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.

Abatangelo N., Jarohs S., Saldana A. (2018). Green function and Martin kernel for higher-order fractional Laplacians in balls. NONLINEAR ANALYSIS, 175, 173-190 [10.1016/j.na.2018.05.019].

Green function and Martin kernel for higher-order fractional Laplacians in balls

Abatangelo N.;
2018

Abstract

We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.
2018
Abatangelo N., Jarohs S., Saldana A. (2018). Green function and Martin kernel for higher-order fractional Laplacians in balls. NONLINEAR ANALYSIS, 175, 173-190 [10.1016/j.na.2018.05.019].
Abatangelo N.; Jarohs S.; Saldana A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/835025
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact