Two particular semi-blind spectrum sensing algorithms are taken into account in this paper: Energy Detection (ED) and Roy’s Largest Root Test (RLRT). Both algorithms require the knowledge of the noise power in order to achieve optimal performance. Since by its nature the noise power is unpredictable, noise variance estimation is needed in order to cope with the absence of prior knowledge of the noise power: this leads to a new hybrid approach for both considered detectors. Probability of detection and false alarm with this new approach are derived in closed-form expressions. The impact of noise estimation accuracy for ED and RLRT is evaluated in terms of Receiver Operating Characteristic (ROC) curves and performance curves, i.e., detection/misdetection probability as a function of the Signal to Noise Ratio (SNR). Analytical results have been confirmed by numerical simulations under a flat-fading channel scenario. It is concluded that both hybrid approaches tend to their ideal cases when a large number of slots is used for noise variance estimation and that the impairment due to noise uncertainty is reduced on RLRT w.r.t. ED.

DHAKAL, P., RIVIELLO, D.G., GARELLO, R., PENNA, F. (2014). Hybrid approach analysis of energy detection and eigenvalue based spectrum sensing algorithms with noise power estimation. USA : International Academy, Research and Industrial Association (IARIA).

Hybrid approach analysis of energy detection and eigenvalue based spectrum sensing algorithms with noise power estimation

RIVIELLO, DANIEL GAETANO
;
2014

Abstract

Two particular semi-blind spectrum sensing algorithms are taken into account in this paper: Energy Detection (ED) and Roy’s Largest Root Test (RLRT). Both algorithms require the knowledge of the noise power in order to achieve optimal performance. Since by its nature the noise power is unpredictable, noise variance estimation is needed in order to cope with the absence of prior knowledge of the noise power: this leads to a new hybrid approach for both considered detectors. Probability of detection and false alarm with this new approach are derived in closed-form expressions. The impact of noise estimation accuracy for ED and RLRT is evaluated in terms of Receiver Operating Characteristic (ROC) curves and performance curves, i.e., detection/misdetection probability as a function of the Signal to Noise Ratio (SNR). Analytical results have been confirmed by numerical simulations under a flat-fading channel scenario. It is concluded that both hybrid approaches tend to their ideal cases when a large number of slots is used for noise variance estimation and that the impairment due to noise uncertainty is reduced on RLRT w.r.t. ED.
2014
COCORA 2014: The Fourth International Conference on Advances in Cognitive Radio
20
25
DHAKAL, P., RIVIELLO, D.G., GARELLO, R., PENNA, F. (2014). Hybrid approach analysis of energy detection and eigenvalue based spectrum sensing algorithms with noise power estimation. USA : International Academy, Research and Industrial Association (IARIA).
DHAKAL, PAWAN; RIVIELLO, DANIEL GAETANO; GARELLO, Roberto; PENNA, FEDERICO
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/834571
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact