Purpose: Immature teeth are characterized by short roots, thin root canal walls, and open apices, which makes them prone to fracture. The aim was to investigate whether fiber-post placement had an influence on the fracture resistance of endodontically treated immature teeth. Materials and Methods: To simulate immature teeth, the apical third of 20 intact mandibular premolars was resected. After the access cavity was prepared, root canals and apices were enlarged. A 4-mm apical barrier was placed using calcium-silicate based material (Biodentine, Septodont). The teeth were then randomly assigned to two groups (n = 10). Root canals in group 1 were sealed using Acroseal (Septodont, France) and gutta-percha, followed by composite resin for the coronal restoration (Evetric, Ivoclar Vivadent). In group 2, fiber posts (FRC Postec Plus, Ivoclar Vivadent) were luted using self-adhesive composite cement (SpeedCEM Plus, Ivoclar Vivadent), followed by the same coronal restoration. The teeth were then subjected to fatigue and static load testing. Results: The average loads (± SD) that led to tooth fracture were: 401.40 ± 296.83 N in group 1 and 636.20 ± 204.95 N in group 2. Unfavorable fractures were noted in 9 specimens from group 1 and in 7 specimens in group 2. No statistically significant difference in fracture resistance or fracture mode was found between the groups. Conclusion: Fiber-post placement had no significant influence on the fracture resistance of endodontically treated immature teeth.

Can fiber-post placement reinforce structurally compromised roots?

Josic U.;
2020

Abstract

Purpose: Immature teeth are characterized by short roots, thin root canal walls, and open apices, which makes them prone to fracture. The aim was to investigate whether fiber-post placement had an influence on the fracture resistance of endodontically treated immature teeth. Materials and Methods: To simulate immature teeth, the apical third of 20 intact mandibular premolars was resected. After the access cavity was prepared, root canals and apices were enlarged. A 4-mm apical barrier was placed using calcium-silicate based material (Biodentine, Septodont). The teeth were then randomly assigned to two groups (n = 10). Root canals in group 1 were sealed using Acroseal (Septodont, France) and gutta-percha, followed by composite resin for the coronal restoration (Evetric, Ivoclar Vivadent). In group 2, fiber posts (FRC Postec Plus, Ivoclar Vivadent) were luted using self-adhesive composite cement (SpeedCEM Plus, Ivoclar Vivadent), followed by the same coronal restoration. The teeth were then subjected to fatigue and static load testing. Results: The average loads (± SD) that led to tooth fracture were: 401.40 ± 296.83 N in group 1 and 636.20 ± 204.95 N in group 2. Unfavorable fractures were noted in 9 specimens from group 1 and in 7 specimens in group 2. No statistically significant difference in fracture resistance or fracture mode was found between the groups. Conclusion: Fiber-post placement had no significant influence on the fracture resistance of endodontically treated immature teeth.
Josic U.; Radovic I.; Juloski J.; Beloica M.; Popovic M.; Alil A.; Mandic J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/834398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact