Generalized metrics, arising from Lawvere's view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.
Pistone P. (2021). On Generalized Metric Spaces for the Simply Typed Lambda-Calculus. Institute of Electrical and Electronics Engineers Inc. [10.1109/LICS52264.2021.9470696].
On Generalized Metric Spaces for the Simply Typed Lambda-Calculus
Pistone P.
2021
Abstract
Generalized metrics, arising from Lawvere's view of metric spaces as enriched categories, have been widely applied in denotational semantics as a way to measure to which extent two programs behave in a similar, although non equivalent, way. However, the application of generalized metrics to higher-order languages like the simply typed lambda calculus has so far proved unsatisfactory. In this paper we investigate a new approach to the construction of cartesian closed categories of generalized metric spaces. Our starting point is a quantitative semantics based on a generalization of usual logical relations. Within this setting, we show that several families of generalized metrics provide ways to extend the Euclidean metric to all higher-order types.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.