Combining machine learning (ML) and computational logic (CL) is hard, mostly because of the inherently- different ways they use to represent knowledge. In fact, while ML relies on fixed-size numeric repre- sentations leveraging on vectors, matrices, or tensors of real numbers, CL relies on logic terms and clauses—which are unlimited in size and structure. Graph neural networks (GNN) are a novelty in the ML world introduced for dealing with graph- structured data in a sub-symbolic way. In other words, GNN pave the way towards the application of ML to logic clauses and knowledge bases. However, there are several ways to encode logic knowledge into graphs: which is the best one heavily depends on the specific task at hand. Accordingly, in this paper, we (i) elicit a number of problems from the field of CL that may benefit from many graph-related problems where GNN has been proved effective; (ii) exemplify the application of GNN to logic theories via an end-to-end toy example, to demonstrate the many intricacies hidden behind the technique; (iii) discuss the possible future directions of the application of GNN to CL in general, pointing out opportunities and open issues.
Andrea Agiollo, G.C. (2021). Graph Neural Networks as the Copula Mundi between Logic and Machine Learning: A Roadmap. Aachen : Sun SITE Central Europe, RWTH Aachen University.
Graph Neural Networks as the Copula Mundi between Logic and Machine Learning: A Roadmap
Andrea Agiollo;Giovanni Ciatto;Andrea Omicini
2021
Abstract
Combining machine learning (ML) and computational logic (CL) is hard, mostly because of the inherently- different ways they use to represent knowledge. In fact, while ML relies on fixed-size numeric repre- sentations leveraging on vectors, matrices, or tensors of real numbers, CL relies on logic terms and clauses—which are unlimited in size and structure. Graph neural networks (GNN) are a novelty in the ML world introduced for dealing with graph- structured data in a sub-symbolic way. In other words, GNN pave the way towards the application of ML to logic clauses and knowledge bases. However, there are several ways to encode logic knowledge into graphs: which is the best one heavily depends on the specific task at hand. Accordingly, in this paper, we (i) elicit a number of problems from the field of CL that may benefit from many graph-related problems where GNN has been proved effective; (ii) exemplify the application of GNN to logic theories via an end-to-end toy example, to demonstrate the many intricacies hidden behind the technique; (iii) discuss the possible future directions of the application of GNN to CL in general, pointing out opportunities and open issues.File | Dimensione | Formato | |
---|---|---|---|
paper18.pdf
accesso aperto
Descrizione: PDF editoriale
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
805.77 kB
Formato
Adobe PDF
|
805.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.