Randomized higher-order computation can be seen as being captured by a λ-calculus endowed with a single algebraic operation, namely a construct for binary probabilistic choice. What matters about such computations is the probability of obtaining any given result, rather than the possibility or the necessity of obtaining it, like in (non)deterministic computation. Termination, arguably the simplest kind of reachability problem, can be spelled out in at least two ways, depending on whether it talks about the probability of convergence or about the expected evaluation time, the second one providing a stronger guarantee. In this paper, we show that intersection types are capable of precisely characterizing both notions of termination inside a single system of types: the probability of convergence of any λ-term can be underapproximated by its type, while the underlying derivation's weight gives a lower bound to the term's expected number of steps to normal form. Noticeably, both approximations are tight-not only soundness but also completeness holds. The crucial ingredient is non-idempotency, without which it would be impossible to reason on the expected number of reduction steps which are necessary to completely evaluate any term. Besides, the kind of approximation we obtain is proved to be optimal recursion theoretically: no recursively enumerable formal system can do better than that.

Dal Lago U., Faggian C., Ronchi Della Rocca S. (2021). Intersection types and (positive) almost-sure termination. PROCEEDINGS OF ACM ON PROGRAMMING LANGUAGES, 5(POPL), 1-32 [10.1145/3434313].

Intersection types and (positive) almost-sure termination

Dal Lago U.;
2021

Abstract

Randomized higher-order computation can be seen as being captured by a λ-calculus endowed with a single algebraic operation, namely a construct for binary probabilistic choice. What matters about such computations is the probability of obtaining any given result, rather than the possibility or the necessity of obtaining it, like in (non)deterministic computation. Termination, arguably the simplest kind of reachability problem, can be spelled out in at least two ways, depending on whether it talks about the probability of convergence or about the expected evaluation time, the second one providing a stronger guarantee. In this paper, we show that intersection types are capable of precisely characterizing both notions of termination inside a single system of types: the probability of convergence of any λ-term can be underapproximated by its type, while the underlying derivation's weight gives a lower bound to the term's expected number of steps to normal form. Noticeably, both approximations are tight-not only soundness but also completeness holds. The crucial ingredient is non-idempotency, without which it would be impossible to reason on the expected number of reduction steps which are necessary to completely evaluate any term. Besides, the kind of approximation we obtain is proved to be optimal recursion theoretically: no recursively enumerable formal system can do better than that.
2021
Dal Lago U., Faggian C., Ronchi Della Rocca S. (2021). Intersection types and (positive) almost-sure termination. PROCEEDINGS OF ACM ON PROGRAMMING LANGUAGES, 5(POPL), 1-32 [10.1145/3434313].
Dal Lago U.; Faggian C.; Ronchi Della Rocca S.
File in questo prodotto:
File Dimensione Formato  
popl2021a.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 465.35 kB
Formato Adobe PDF
465.35 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/834265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact