The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures. According to various international codes, core samples are drilled and tested to obtain the concrete compressive strengths. Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure. The commonly used non-destructive testing (NDT) methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test. The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together, as proposed.in the SonReb method. There are three techniques that are commonly used to predict the compressive strength of concrete based on the SonReb measurements: computational modeling, artificial intelligence, and parametric multi-variable regression models. In a previous study the accuracy of the correlation formulas deduced from the last technique has been investigated in comparison with the effective compressive strengths based on destructive test results on core drilled in adjacent locations. The aim of this study is to verify the accuracy of Artificial Neural Approach comparing the estimated compressive strengths based on NDT measured parameters with the same effective compressive strengths. The comparisons show the best performance of ANN approach.

Bonagura M., Nobile L. (2021). Artificial neural network (ANN) approach for predicting concrete compressive strength by SonReb. STRUCTURAL DURABILITY & HEALTH MONITORING, 15(2), 125-137 [10.32604/sdhm.2021.015644].

Artificial neural network (ANN) approach for predicting concrete compressive strength by SonReb

Bonagura M.;Nobile L.
2021

Abstract

The compressive strength of concrete is one of most important mechanical parameters in the performance assessment of existing reinforced concrete structures. According to various international codes, core samples are drilled and tested to obtain the concrete compressive strengths. Non-destructive testing is an important alternative when destructive testing is not feasible without damaging the structure. The commonly used non-destructive testing (NDT) methods to estimate the in-situ values include the Rebound hammer test and the Ultrasonic Pulse Velocity test. The poor reliability of these tests due to different aspects could be partially contrasted by using both methods together, as proposed.in the SonReb method. There are three techniques that are commonly used to predict the compressive strength of concrete based on the SonReb measurements: computational modeling, artificial intelligence, and parametric multi-variable regression models. In a previous study the accuracy of the correlation formulas deduced from the last technique has been investigated in comparison with the effective compressive strengths based on destructive test results on core drilled in adjacent locations. The aim of this study is to verify the accuracy of Artificial Neural Approach comparing the estimated compressive strengths based on NDT measured parameters with the same effective compressive strengths. The comparisons show the best performance of ANN approach.
2021
Bonagura M., Nobile L. (2021). Artificial neural network (ANN) approach for predicting concrete compressive strength by SonReb. STRUCTURAL DURABILITY & HEALTH MONITORING, 15(2), 125-137 [10.32604/sdhm.2021.015644].
Bonagura M.; Nobile L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/832911
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact