In this paper we consider the optimal control of Hilbert space-valued infinite-dimensional Piecewise Deterministic Markov Processes (PDMP) and we prove that the corresponding value function can be represented via a Feynman–Kac type formula through the solution of a constrained Backward Stochastic Differential Equation. A fundamental step consists in showing that the corresponding integro-differential Hamilton–Jacobi–Bellman equation has a unique viscosity solution, by proving a suitable comparison theorem. We apply our results to the control of a PDMP Hodgkin-Huxley model with spatial component.

Bandini, E., Thieullen, M. (2021). Optimal Control of Infinite-Dimensional Piecewise Deterministic Markov Processes: A BSDE Approach. Application to the Control of an Excitable Cell Membrane. APPLIED MATHEMATICS AND OPTIMIZATION, 84(2), 1549-1603 [10.1007/s00245-020-09687-y].

Optimal Control of Infinite-Dimensional Piecewise Deterministic Markov Processes: A BSDE Approach. Application to the Control of an Excitable Cell Membrane

Bandini, E;
2021

Abstract

In this paper we consider the optimal control of Hilbert space-valued infinite-dimensional Piecewise Deterministic Markov Processes (PDMP) and we prove that the corresponding value function can be represented via a Feynman–Kac type formula through the solution of a constrained Backward Stochastic Differential Equation. A fundamental step consists in showing that the corresponding integro-differential Hamilton–Jacobi–Bellman equation has a unique viscosity solution, by proving a suitable comparison theorem. We apply our results to the control of a PDMP Hodgkin-Huxley model with spatial component.
2021
Bandini, E., Thieullen, M. (2021). Optimal Control of Infinite-Dimensional Piecewise Deterministic Markov Processes: A BSDE Approach. Application to the Control of an Excitable Cell Membrane. APPLIED MATHEMATICS AND OPTIMIZATION, 84(2), 1549-1603 [10.1007/s00245-020-09687-y].
Bandini, E; Thieullen, M
File in questo prodotto:
File Dimensione Formato  
ResivedAMO.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 708.27 kB
Formato Adobe PDF
708.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/832314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact