We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L1 appearing naturally in these contexts.

Nguyen H. -M., Pinamonti A., Squassina M., Vecchi E. (2018). New characterizations of magnetic Sobolev spaces. ADVANCES IN NONLINEAR ANALYSIS, 7(2), 227-245 [10.1515/anona-2017-0239].

New characterizations of magnetic Sobolev spaces

Vecchi E.
2018

Abstract

We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L1 appearing naturally in these contexts.
2018
Nguyen H. -M., Pinamonti A., Squassina M., Vecchi E. (2018). New characterizations of magnetic Sobolev spaces. ADVANCES IN NONLINEAR ANALYSIS, 7(2), 227-245 [10.1515/anona-2017-0239].
Nguyen H. -M.; Pinamonti A.; Squassina M.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
10.1515_anona-2017-0239.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 838.18 kB
Formato Adobe PDF
838.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/831669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
social impact