We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L1 appearing naturally in these contexts.
Nguyen H. -M., Pinamonti A., Squassina M., Vecchi E. (2018). New characterizations of magnetic Sobolev spaces. ADVANCES IN NONLINEAR ANALYSIS, 7(2), 227-245 [10.1515/anona-2017-0239].
New characterizations of magnetic Sobolev spaces
Vecchi E.
2018
Abstract
We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L1 appearing naturally in these contexts.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.1515_anona-2017-0239.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
838.18 kB
Formato
Adobe PDF
|
838.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.