We consider planar, special Bézier curves, i.e., polynomial Bézier curves in the plane whose control polygon is fully identified by the first edge and a 2×2 matrix M. We focus on the case where M has two real eigenvalues and we formulate, in terms of the Schur form of M, necessary and sufficient conditions for a regular, planar special Bézier curve to be a class A curve, i.e., a curve with monotone curvature, for any degree and any choice of the first edge. The result is simple in its formulation and can thus be easily used for both designing class A curves and analyzing given special Bézier curves.

Romani L., Viscardi A. (2021). Planar class A Bézier curves: The case of real eigenvalues. COMPUTER AIDED GEOMETRIC DESIGN, 89, 1-14 [10.1016/j.cagd.2021.102021].

Planar class A Bézier curves: The case of real eigenvalues

Romani L.;Viscardi A.
2021

Abstract

We consider planar, special Bézier curves, i.e., polynomial Bézier curves in the plane whose control polygon is fully identified by the first edge and a 2×2 matrix M. We focus on the case where M has two real eigenvalues and we formulate, in terms of the Schur form of M, necessary and sufficient conditions for a regular, planar special Bézier curve to be a class A curve, i.e., a curve with monotone curvature, for any degree and any choice of the first edge. The result is simple in its formulation and can thus be easily used for both designing class A curves and analyzing given special Bézier curves.
2021
Romani L., Viscardi A. (2021). Planar class A Bézier curves: The case of real eigenvalues. COMPUTER AIDED GEOMETRIC DESIGN, 89, 1-14 [10.1016/j.cagd.2021.102021].
Romani L.; Viscardi A.
File in questo prodotto:
File Dimensione Formato  
postprint_CAGD2021b.pdf

Open Access dal 13/07/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/831309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact