Recent Structural Health Monitoring (SHM) systems might take advantage of Internet of Things (IoT) technologies for fine-grained and autonomic sensors data management and processing. Moreover, current SHM deployments often demand for the installation of multi-type and heterogeneous sensor devices capable to perform long-term measurements; from here, the need for dedicated software platforms allowing for scalability and interoperability requirements arises. In this paper, we jointly address the two issues above by proposing MODRON, which is a SHM-dedicated IoT platform with sensor-to-cloud support. The software architecture leverages the W3C Web of Things (WoT) standard for multi-source sensors data acquisition and fusion. The platform includes an edge component, implementing the communication with the monitoring layer and the data exposition through WoT Web Things (WTs), and a cloud component, embedding sensor/WT management capabilities, which is in charge of distributed data storage, aggregation, visualization and analytics. We illustrate the abstract MODRON architecture and its current implementation that supports two different SHM sensor types (MEMS accelerometers and piezoelectric devices). In addition, we describe the system operations on a real-world SHM system, i.e. the monitoring of a metallic structure instrumented with multiple sensor networks.
Aguzzi C., Gigli L., Sciullo L., Trotta A., Zonzini F., De Marchi L., et al. (2021). MODRON: A scalable and interoperable web of things platform for structural health monitoring. 345 E 47TH ST, NEW YORK, NY 10017 USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/CCNC49032.2021.9369492].
MODRON: A scalable and interoperable web of things platform for structural health monitoring
Aguzzi C.;Gigli L.;Sciullo L.;Trotta A.;Zonzini F.;De Marchi L.;Di Felice M.;Marzani A.;Cinotti T. S.
2021
Abstract
Recent Structural Health Monitoring (SHM) systems might take advantage of Internet of Things (IoT) technologies for fine-grained and autonomic sensors data management and processing. Moreover, current SHM deployments often demand for the installation of multi-type and heterogeneous sensor devices capable to perform long-term measurements; from here, the need for dedicated software platforms allowing for scalability and interoperability requirements arises. In this paper, we jointly address the two issues above by proposing MODRON, which is a SHM-dedicated IoT platform with sensor-to-cloud support. The software architecture leverages the W3C Web of Things (WoT) standard for multi-source sensors data acquisition and fusion. The platform includes an edge component, implementing the communication with the monitoring layer and the data exposition through WoT Web Things (WTs), and a cloud component, embedding sensor/WT management capabilities, which is in charge of distributed data storage, aggregation, visualization and analytics. We illustrate the abstract MODRON architecture and its current implementation that supports two different SHM sensor types (MEMS accelerometers and piezoelectric devices). In addition, we describe the system operations on a real-world SHM system, i.e. the monitoring of a metallic structure instrumented with multiple sensor networks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.