Pentachlorophenol (PCP) is a toxic compound, which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Bioremediation is an emerging approach to rehabilitating areas polluted by recalcitrant xenobiotics. In the present study, we evaluated the potential of three strains of Pseudomonas (P. putida S121, P. rhizophila S211, and P. fuscovagiceae S115) as bioremediation agents in depletion and detoxification of PCP in soil microcosms. PCP removal was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum PCP removal yield (85 ± 5%) were: 500 mg/kg PCP concentration, 108 UFC/g soil inoculum size of each strain and 55 days incubation period. The bacterial strains, P. putida, P. rhizophila, and P. fuscovagiceae, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.
Hassen W., Cherif H., Werhani R., Raddadi N., Neifar M., Hassen A., et al. (2021). Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas species as detoxification agents. ARCHIVES OF MICROBIOLOGY, 203(7), 4641-4651 [10.1007/s00203-021-02451-y].
Exhaustion of pentachlorophenol in soil microcosms with three Pseudomonas species as detoxification agents
Raddadi N.;
2021
Abstract
Pentachlorophenol (PCP) is a toxic compound, which is widely used as a wood preservative product and general biocide. It is persistent in the environment and has been classified as a persistent organic pollutant to be reclaimed in many countries. Bioremediation is an emerging approach to rehabilitating areas polluted by recalcitrant xenobiotics. In the present study, we evaluated the potential of three strains of Pseudomonas (P. putida S121, P. rhizophila S211, and P. fuscovagiceae S115) as bioremediation agents in depletion and detoxification of PCP in soil microcosms. PCP removal was effectively optimized using a central-composite experimental design and response surface methodology (RSM). The optimum conditions for maximum PCP removal yield (85 ± 5%) were: 500 mg/kg PCP concentration, 108 UFC/g soil inoculum size of each strain and 55 days incubation period. The bacterial strains, P. putida, P. rhizophila, and P. fuscovagiceae, showed good capability to tolerate and degrade PCP so that they could be successfully used in synergistic effect to treat PCP polluted soils.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.