The paper deals with the existence of multiple solutions for a boundary value problem driven by the magnetic fractional Laplacian (−Δ)As, that is (−Δ)Asu=λf(|u|)u in Ω,u=0 in Rn∖Ω, where λ is a real parameter, f is a continuous function and Ω is an open bounded subset of Rn with Lipschitz boundary. We prove that the problem admits at least two nontrivial weak solutions under two different sets of conditions on the nonlinear term f which are dual in a suitable sense.

Fiscella A., Pinamonti A., Vecchi E. (2017). Multiplicity results for magnetic fractional problems. JOURNAL OF DIFFERENTIAL EQUATIONS, 263(8), 4617-4633 [10.1016/j.jde.2017.05.028].

Multiplicity results for magnetic fractional problems

Vecchi E.
2017

Abstract

The paper deals with the existence of multiple solutions for a boundary value problem driven by the magnetic fractional Laplacian (−Δ)As, that is (−Δ)Asu=λf(|u|)u in Ω,u=0 in Rn∖Ω, where λ is a real parameter, f is a continuous function and Ω is an open bounded subset of Rn with Lipschitz boundary. We prove that the problem admits at least two nontrivial weak solutions under two different sets of conditions on the nonlinear term f which are dual in a suitable sense.
2017
Fiscella A., Pinamonti A., Vecchi E. (2017). Multiplicity results for magnetic fractional problems. JOURNAL OF DIFFERENTIAL EQUATIONS, 263(8), 4617-4633 [10.1016/j.jde.2017.05.028].
Fiscella A.; Pinamonti A.; Vecchi E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/830957
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact