The origins of bisimulation and bisimilarity are examined, in the three fields where they have been independently discovered: Computer Science, Philosophical Logic (precisely, Modal Logic), Set Theory. Bisimulation and bisimilarity are coinductive notions, and as such are intimately related to fixed points, in particular greatest fixed points. Therefore also the appearance of coinduction and fixed points is discussed, though in this case only within Computer Science. The paper ends with some historical remarks on the main fixed-point theorems (such as Knaster-Tarski) that underpin the fixed-point theory presented.
D. Sangiorgi (2009). On the origins of bisimulation and coinduction. ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 31, number 4, article 41, 1-41 [10.1145/1516507.1516510].
On the origins of bisimulation and coinduction
SANGIORGI, DAVIDE
2009
Abstract
The origins of bisimulation and bisimilarity are examined, in the three fields where they have been independently discovered: Computer Science, Philosophical Logic (precisely, Modal Logic), Set Theory. Bisimulation and bisimilarity are coinductive notions, and as such are intimately related to fixed points, in particular greatest fixed points. Therefore also the appearance of coinduction and fixed points is discussed, though in this case only within Computer Science. The paper ends with some historical remarks on the main fixed-point theorems (such as Knaster-Tarski) that underpin the fixed-point theory presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.