In this paper, we have studied an additively manufactured metallic component, intended for ultra-high vacuum application, the exit-snout of the MACHINA transportable proton accelerator beam-line. Metal additive manufacturing components can exhibit heterogeneous and anisotropic microstructures. Two non-destructive imaging techniques, X-ray computed tomography and Neutron Tomography, were employed to examine its microstructure. They unveiled the presence of porosity and channels, the size and composition of grains and intergranular precipitates, and the general behavior of the spatial distribution of the solidification lines. While X-ray computed tomography evidenced qualitative details about the surface roughness and internal defects, neutron tomography showed excellent ability in imaging the spatial density distribution within the component. The anisotropy of the density was attributed to the material building orientation during the 3D printing process. Density variations suggest the possibility of defect pathways, which could affect high vacuum performances. In addition, these results highlight the importance of considering building orientation in the design for additive manufacturing for UHV applications. Graphical Abstract: [Figure not available: see fulltext.]
Grazzi F., Cialdai C., Manetti M., Massi M., Morigi M.P., Bettuzzi M., et al. (2021). A multi-technique tomography-based approach for non-invasive characterization of additive manufacturing components in view of vacuum/UHV applications: preliminary results. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI, 32(3), 463-477 [10.1007/s12210-021-00994-2].
A multi-technique tomography-based approach for non-invasive characterization of additive manufacturing components in view of vacuum/UHV applications: preliminary results
Morigi M. P.Writing – Review & Editing
;Bettuzzi M.Data Curation
;Brancaccio R.Software
;Albertin F.Writing – Review & Editing
;
2021
Abstract
In this paper, we have studied an additively manufactured metallic component, intended for ultra-high vacuum application, the exit-snout of the MACHINA transportable proton accelerator beam-line. Metal additive manufacturing components can exhibit heterogeneous and anisotropic microstructures. Two non-destructive imaging techniques, X-ray computed tomography and Neutron Tomography, were employed to examine its microstructure. They unveiled the presence of porosity and channels, the size and composition of grains and intergranular precipitates, and the general behavior of the spatial distribution of the solidification lines. While X-ray computed tomography evidenced qualitative details about the surface roughness and internal defects, neutron tomography showed excellent ability in imaging the spatial density distribution within the component. The anisotropy of the density was attributed to the material building orientation during the 3D printing process. Density variations suggest the possibility of defect pathways, which could affect high vacuum performances. In addition, these results highlight the importance of considering building orientation in the design for additive manufacturing for UHV applications. Graphical Abstract: [Figure not available: see fulltext.]File | Dimensione | Formato | |
---|---|---|---|
Grazzi2021_Article_AMulti-techniqueTomography-bas.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.09 MB
Formato
Adobe PDF
|
2.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.