One of the problems on which a great deal of focus is being placed today, is how to teach Calculus in the presence of the massive diffusion of Computer Algebra tools and online resources among students. The essence of the problem lies in the fact that, during the problem solving activities, almost all undergraduates can be exposed to certain lqlq new q q functions, not typically treated at their level. This, without being prepared to handle them or, in some cases, even knowing the meaning of the answer provided by the computer system used. One of these functions is Lambert’s W function, undoubtedly due to the elementary nature of its definition. In this article we introduce W, in a way that is easy to grasp for first year undergraduate students and we provide some general results concerning polynomial-exponential and polynomial-logarithmic equations. Among the many possible examples of its applications, we will see how \$W\$ comes into play in epidemiology in the SIR model. In the second part, using more advanced concepts, we motivate the importance of the Implicit Function Theorem, using it to obtain the power series expansion of the Lambert function around the origin. Based on this approach, we therefore also provide a way to obtain the power series expansion of the inverse of a given smooth function f(y), when it is assumed that \$f(0)=0,,f'(0) eq0\$, aided by the computational power of Mathematica\$_{ ext{ extregistered}}\$. Basically, in this way, we present an alternative approach to the Lagrange Burman Inversion Theorem, although in a particular but relevant case, since the general approach is not at an undergraduate level. Finally, these skills are used to take into consideration the particular quintic equation in the unknown \$y\$ presented by F. Beukers in cite{beukers2014}. Namely, we consider \$x(1+y)^5-y=0\$ as an example of an equation for which the power series representation of one of its real solutions is known, calculating, with the same method used for the Lambert function, the first terms of its power series representation.

### The Lambert function, the quintic equation and the proactive discovery of the Implicit Function Theorem

#### Abstract

One of the problems on which a great deal of focus is being placed today, is how to teach Calculus in the presence of the massive diffusion of Computer Algebra tools and online resources among students. The essence of the problem lies in the fact that, during the problem solving activities, almost all undergraduates can be exposed to certain lqlq new q q functions, not typically treated at their level. This, without being prepared to handle them or, in some cases, even knowing the meaning of the answer provided by the computer system used. One of these functions is Lambert’s W function, undoubtedly due to the elementary nature of its definition. In this article we introduce W, in a way that is easy to grasp for first year undergraduate students and we provide some general results concerning polynomial-exponential and polynomial-logarithmic equations. Among the many possible examples of its applications, we will see how \$W\$ comes into play in epidemiology in the SIR model. In the second part, using more advanced concepts, we motivate the importance of the Implicit Function Theorem, using it to obtain the power series expansion of the Lambert function around the origin. Based on this approach, we therefore also provide a way to obtain the power series expansion of the inverse of a given smooth function f(y), when it is assumed that \$f(0)=0,,f'(0) eq0\$, aided by the computational power of Mathematica\$_{ ext{ extregistered}}\$. Basically, in this way, we present an alternative approach to the Lagrange Burman Inversion Theorem, although in a particular but relevant case, since the general approach is not at an undergraduate level. Finally, these skills are used to take into consideration the particular quintic equation in the unknown \$y\$ presented by F. Beukers in cite{beukers2014}. Namely, we consider \$x(1+y)^5-y=0\$ as an example of an equation for which the power series representation of one of its real solutions is known, calculating, with the same method used for the Lambert function, the first terms of its power series representation.
##### Scheda breve Scheda completa Scheda completa (DC)
Silvia Foschi, Daniele Ritelli
File in questo prodotto:
File
the-lambert-function,-the-quintic-equation-and-the-proactive-discovery-of-the-implicit-function-theorem.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 651.03 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11585/829253`
• ND
• ND
• ND