To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.

Dajti, I., Valenzuela, J.I., Boccalatte, L.A., Gemelli, N.A., Smith, D.E., Dudi-Venkata, N.N., et al. (2021). Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score. BRITISH JOURNAL OF SURGERY, Epub ahead of print, 1-19 [10.1093/bjs/znab183].

Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

Bernante, P;Bertoglio, P;De Iaco, P;Perrone, A M;Pignatti, M;Poggioli, G;Ravaioli, M;Rottoli, M;Taffurelli, M;Tanzanu, M;Tonini, V;Sartarelli, L;
2021

Abstract

To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.
2021
Dajti, I., Valenzuela, J.I., Boccalatte, L.A., Gemelli, N.A., Smith, D.E., Dudi-Venkata, N.N., et al. (2021). Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score. BRITISH JOURNAL OF SURGERY, Epub ahead of print, 1-19 [10.1093/bjs/znab183].
Dajti, I; Valenzuela, J I; Boccalatte, L A; Gemelli, N A; Smith, D E; Dudi-Venkata, N N; Kroon, H M; Sammour, T; Roberts, M; Mitchell, D; Lah, K; Pear...espandi
File in questo prodotto:
File Dimensione Formato  
2021 - BJS - machine learning COVIDSurg mortality score.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 541.39 kB
Formato Adobe PDF
541.39 kB Adobe PDF Visualizza/Apri
znab183_Supplementary_Data.docx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 1.37 MB
Formato Microsoft Word XML
1.37 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/827796
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 27
social impact