Remote sensing can be fruitfully used in the characterization of metals within stockpiles and tailings, produced from mining activities. Satellite information, in the form of band ratio, can act as an auxiliary variable, with a certain correlation with the ground primary data. In the presence of this auxiliary variable, modeled with nested structures, the spatial components without correlation can be filtered out, so that the useful correlation with ground data grows. This paper investigates the possibility to substitute in a co-kriging system, the whole band ratio information, with only the correlated components. The method has been applied over a bauxite residues case study and presents three estimation alternatives: ordinary kriging, co-kriging, component co-kriging. Results have shown how using the most correlated component reduces the estimation variance and improves the estimation results. In general terms, when a good correlation with ground samples exists, co-kriging of the satellite band-ratio Component improves the reconstruction of mineral grade distribution, thus affecting the selectivity. On the other hand, the use of the components approach exalts the distance variability.

Spatial Component Analysis to Improve Mineral Estimation Using Sentinel-2 Band Ratio: Application to a Greek Bauxite Residue

Bruno, Roberto;Kasmaeeyazdi, Sara;Tinti, Francesco;Mandanici, Emanuele;
2021

Abstract

Remote sensing can be fruitfully used in the characterization of metals within stockpiles and tailings, produced from mining activities. Satellite information, in the form of band ratio, can act as an auxiliary variable, with a certain correlation with the ground primary data. In the presence of this auxiliary variable, modeled with nested structures, the spatial components without correlation can be filtered out, so that the useful correlation with ground data grows. This paper investigates the possibility to substitute in a co-kriging system, the whole band ratio information, with only the correlated components. The method has been applied over a bauxite residues case study and presents three estimation alternatives: ordinary kriging, co-kriging, component co-kriging. Results have shown how using the most correlated component reduces the estimation variance and improves the estimation results. In general terms, when a good correlation with ground samples exists, co-kriging of the satellite band-ratio Component improves the reconstruction of mineral grade distribution, thus affecting the selectivity. On the other hand, the use of the components approach exalts the distance variability.
Bruno, Roberto; Kasmaeeyazdi, Sara; Tinti, Francesco; Mandanici, Emanuele; Balomenos, Efthymios
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/827064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact