After the Fukushima accident, the interest of the public to nuclear safety has growth and the international technical nuclear community has increased his attention in the investigation and the characterization of Severe Accident (SA) scenarios. In order to simulate the different, complex and multi-physical phenomena involved in a SA, computational tools, known as SA codes, have been developed in the last decades. In order to give some insights on the modelling capabilities of these tools and the differences in the calculation results, also related to the user-effect, an analysis of an unmitigated Station Black Out (SBO) occurring in a generic Western three-loops PWR 900 MWe has been carried out by the authors in the framework of the NUGENIA TA-2 ASCOM project. The simulation results of ASTEC code (study carried out with ASTEC V2, IRSN all rights reserved, [2019]), developed by IRSN, and MELCOR 2.2 code, developed by SANDIA for USNRC, have been compared and analyzed. The SBO scenario considered takes into account the intervention of the accumulators as only accident mitigation strategy. Several figures of merits related to the thermal-hydraulic (e.g. primary pressure, cladding temperature, etc.) and to the core degradation (e.g. hydrogen production, etc.) have been considered to describe the accident evolution until the vessel failure, for the two codes comparison.

SBO analysis of a generic PWR-900 with ASTEC and MELCOR codes

Manservisi S.
2021

Abstract

After the Fukushima accident, the interest of the public to nuclear safety has growth and the international technical nuclear community has increased his attention in the investigation and the characterization of Severe Accident (SA) scenarios. In order to simulate the different, complex and multi-physical phenomena involved in a SA, computational tools, known as SA codes, have been developed in the last decades. In order to give some insights on the modelling capabilities of these tools and the differences in the calculation results, also related to the user-effect, an analysis of an unmitigated Station Black Out (SBO) occurring in a generic Western three-loops PWR 900 MWe has been carried out by the authors in the framework of the NUGENIA TA-2 ASCOM project. The simulation results of ASTEC code (study carried out with ASTEC V2, IRSN all rights reserved, [2019]), developed by IRSN, and MELCOR 2.2 code, developed by SANDIA for USNRC, have been compared and analyzed. The SBO scenario considered takes into account the intervention of the accumulators as only accident mitigation strategy. Several figures of merits related to the thermal-hydraulic (e.g. primary pressure, cladding temperature, etc.) and to the core degradation (e.g. hydrogen production, etc.) have been considered to describe the accident evolution until the vessel failure, for the two codes comparison.
2021
Journal of Physics: Conference Series
1
10
Maccari P.; Mascari F.; Ederli S.; Manservisi S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/824505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact