In this paper we prove a compensated compactness theorem for differential forms of the intrinsic complex of a Carnot group. The proof relies on an L^s-Hodge decomposition for these forms. Because of the lack of homogeneity of the intrinsic exterior differential, Hodge decomposition is proved using the parametrix of a suitable 0-order Laplacian on forms.
Titolo: | Compensated Compactness for Differential Forms in Carnot Groups and Applications |
Autore/i: | BALDI, ANNALISA; FRANCHI, BRUNO; N. Tchou; TESI, MARIA CARLA |
Autore/i Unibo: | |
Anno: | 2010 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.aim.2009.09.020 |
Abstract: | In this paper we prove a compensated compactness theorem for differential forms of the intrinsic complex of a Carnot group. The proof relies on an L^s-Hodge decomposition for these forms. Because of the lack of homogeneity of the intrinsic exterior differential, Hodge decomposition is proved using the parametrix of a suitable 0-order Laplacian on forms. |
Data prodotto definitivo in UGOV: | 2010-02-02 13:32:12 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.