The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here we describe the design, synthesis and properties of pseudorotaxanes in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behaviour of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. We use NMR spectroscopy to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.
Corra, S., Casimiro, L., Baroncini, M., Groppi, J., La Rosa, M., Tranfic Bakic, M., et al. (2021). Artificial supramolecular pumps powered by light. CHEMISTRY-A EUROPEAN JOURNAL, 27(43), 11076-11083 [10.1002/chem.202101163].
Artificial supramolecular pumps powered by light
Corra, Stefano;Casimiro, Lorenzo;Baroncini, Massimo;Groppi, Jessica;La Rosa, Marcello;Tranfic Bakic, Marina;Silvi, Serena;Credi, Alberto
2021
Abstract
The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here we describe the design, synthesis and properties of pseudorotaxanes in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behaviour of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. We use NMR spectroscopy to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.File | Dimensione | Formato | |
---|---|---|---|
2021-304) CEJ-Light driven supramolecular pumps.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri |
chem202101163-sup-0001-misc_information.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
2.91 MB
Formato
Adobe PDF
|
2.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.