Let gamma_i(G) and Z_i(G) denote the i-th terms of the lower and upper central series of a group G, respectively. P. Hall showed that if gamma_{i+1}(G) is finite then the index |G:Z_{2i}(G)| is finite. We- prove that the same result holds under the weaker hypothesis that |gamma_{i+1}(G):(gamma_{i+1}(G)cap Z_i(G)| is finite.
Titolo: | Generalizing a theorem of P. Hall on finite-by-nilpotent groups |
Autore/i: | G. Fernández Alcober; MORIGI, MARTA |
Autore/i Unibo: | |
Anno: | 2009 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1090/S0002-9939-08-09688-3 |
Abstract: | Let gamma_i(G) and Z_i(G) denote the i-th terms of the lower and upper central series of a group G, respectively. P. Hall showed that if gamma_{i+1}(G) is finite then the index |G:Z_{2i}(G)| is finite. We- prove that the same result holds under the weaker hypothesis that |gamma_{i+1}(G):(gamma_{i+1}(G)cap Z_i(G)| is finite. |
Data prodotto definitivo in UGOV: | 2010-01-07 11:09:28 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.