We comment here on a recent paper in this journal, on a non-monotone transformation of biomarkers aimed at improving diagnostic accuracy. We highlight that, in a binary classification problem, the proposed transformation finds its motivation in the Neyman-Pearson lemma, so that the underlying approach is very general and it is applicable to many parametric families, other than the normal one.

Adimari, G., To, D., Chiogna, M. (2021). Non-monotone transformation of biomarkers. STATISTICAL METHODS IN MEDICAL RESEARCH, 30(2 (February)), 349-353 [10.1177/0962280220950050].

Non-monotone transformation of biomarkers

Chiogna, Monica
2021

Abstract

We comment here on a recent paper in this journal, on a non-monotone transformation of biomarkers aimed at improving diagnostic accuracy. We highlight that, in a binary classification problem, the proposed transformation finds its motivation in the Neyman-Pearson lemma, so that the underlying approach is very general and it is applicable to many parametric families, other than the normal one.
2021
Adimari, G., To, D., Chiogna, M. (2021). Non-monotone transformation of biomarkers. STATISTICAL METHODS IN MEDICAL RESEARCH, 30(2 (February)), 349-353 [10.1177/0962280220950050].
Adimari, Gianfranco; To, Duc-Khanh; Chiogna, Monica
File in questo prodotto:
File Dimensione Formato  
11585_817546.pdf

accesso aperto

Descrizione: AAM
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 215.77 kB
Formato Adobe PDF
215.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/817546
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact