Quantum Annealing (QA) is an emerging technique, derived from Simulated Annealing, providing metaheuristics for multivariable optimisation problems. Studies have shown that it can be applied to solve NP-hard problems with faster convergence and better quality of result than other traditional heuristics, with potential applications in a variety of fields, from transport logistics to circuit synthesis and optimisation. In this paper, we present a hardware architecture implementing a QA-based solver for the Multidimensional Knapsack Problem, designed to improve the performance of the algorithm by exploiting parallelised computation. We synthesised the architecture using as a target an Altera FPGA board and simulated the execution for solving a set of benchmarks available in the literature. Simulation results show that the proposed implementation is about 100 times faster than a single-thread general-purpose CPU without impact on the accuracy of the solution.
Forno, E., Acquaviva, A., Kobayashi, Y., Macii, E., Urgese, G. (2018). A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration. IFIP/IEEE [10.1109/VLSI-SoC.2018.8644777].
A Parallel Hardware Architecture For Quantum Annealing Algorithm Acceleration
Andrea Acquaviva;
2018
Abstract
Quantum Annealing (QA) is an emerging technique, derived from Simulated Annealing, providing metaheuristics for multivariable optimisation problems. Studies have shown that it can be applied to solve NP-hard problems with faster convergence and better quality of result than other traditional heuristics, with potential applications in a variety of fields, from transport logistics to circuit synthesis and optimisation. In this paper, we present a hardware architecture implementing a QA-based solver for the Multidimensional Knapsack Problem, designed to improve the performance of the algorithm by exploiting parallelised computation. We synthesised the architecture using as a target an Altera FPGA board and simulated the execution for solving a set of benchmarks available in the literature. Simulation results show that the proposed implementation is about 100 times faster than a single-thread general-purpose CPU without impact on the accuracy of the solution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


