Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are a-priori estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the sub-Riemannian minimal surface along its Legendrian foliation.

L. Capogna, G. Citti, M. Manfredini (2009). Regularity of non-characteristic minimal graphs in the Heisenberg group $mathbb{H}^{1}$. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 58, 2115-2160 [10.1512/iumj.2009.58.3673].

Regularity of non-characteristic minimal graphs in the Heisenberg group $mathbb{H}^{1}$

CITTI, GIOVANNA;MANFREDINI, MARIA
2009

Abstract

Minimal surfaces in the sub-Riemannian Heisenberg group can be constructed by means of a Riemannian approximation scheme, as limit of Riemannian minimal surfaces. We study the regularity of Lipschitz, non-characteristic minimal surfaces which arise as such limits. Our main results are a-priori estimates on the solutions of the approximating Riemannian PDE and the ensuing C∞ regularity of the sub-Riemannian minimal surface along its Legendrian foliation.
2009
L. Capogna, G. Citti, M. Manfredini (2009). Regularity of non-characteristic minimal graphs in the Heisenberg group $mathbb{H}^{1}$. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 58, 2115-2160 [10.1512/iumj.2009.58.3673].
L. Capogna; G. Citti; M. Manfredini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/81424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 31
social impact