In this paper we study the generalized mean curvature flow of sets in the sub-Riemannian geometry of Carnot groups. We extend to our context the level sets method and the weak (viscosity) solutions introduced in the Euclidean setting in [4] and [12]. We establish two special cases of the comparison principle, existence, uniqueness and basic geometric properties of the flow.
Titolo: | Generalized Mean Curvature Flow in Carnot Groups |
Autore/i: | L. Capogna; CITTI, GIOVANNA |
Autore/i Unibo: | |
Anno: | 2009 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1080/03605300903050257 |
Abstract: | In this paper we study the generalized mean curvature flow of sets in the sub-Riemannian geometry of Carnot groups. We extend to our context the level sets method and the weak (viscosity) solutions introduced in the Euclidean setting in [4] and [12]. We establish two special cases of the comparison principle, existence, uniqueness and basic geometric properties of the flow. |
Data prodotto definitivo in UGOV: | 2009-12-18 19:27:46 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.