Working Memory (WM) plays a crucial role in supporting children's mathematical learning. However, there is no consensus on the relative contributions of different WM domains (i.e., verbal, visuo-spatial, and numerical-verbal) and processes (i.e., low-control and high-control) to mathematical performance, specifically before and after the onset of formal education. This cross-sectional study examined the relations between WM domains and processes and early mathematical knowledge, comparing a group of children in the second year of preschool (N = 66) to a group of first graders (N = 110). Results of multigroup path analysis showed that whereas visuo-spatial low-control WM significantly predicted early mathematical knowledge only among preschoolers, verbal low-control WM was a significant predictor only among first graders. Instead, the contribution of visuo-spatial high-control WM emerged as significant for both age groups, as well as that of numerical-verbal WM, although the latter to a greater extent among preschoolers. These findings provide new insights into the WM domains and processes most involved in early mathematical knowledge at different developmental stages, with potential implications for the implementation of age-appropriate training interventions targeting specific WM skills before and after the onset of formal education.
De Vita, C., Costa, H.M., Tomasetto, C., Passolunghi, M.C. (2022). The contributions of working memory domains and processes to early mathematical knowledge between preschool and first grade. PSYCHOLOGICAL RESEARCH, 86(2), 497-511 [10.1007/s00426-021-01496-4].
The contributions of working memory domains and processes to early mathematical knowledge between preschool and first grade
Tomasetto, CarloFormal Analysis
;
2022
Abstract
Working Memory (WM) plays a crucial role in supporting children's mathematical learning. However, there is no consensus on the relative contributions of different WM domains (i.e., verbal, visuo-spatial, and numerical-verbal) and processes (i.e., low-control and high-control) to mathematical performance, specifically before and after the onset of formal education. This cross-sectional study examined the relations between WM domains and processes and early mathematical knowledge, comparing a group of children in the second year of preschool (N = 66) to a group of first graders (N = 110). Results of multigroup path analysis showed that whereas visuo-spatial low-control WM significantly predicted early mathematical knowledge only among preschoolers, verbal low-control WM was a significant predictor only among first graders. Instead, the contribution of visuo-spatial high-control WM emerged as significant for both age groups, as well as that of numerical-verbal WM, although the latter to a greater extent among preschoolers. These findings provide new insights into the WM domains and processes most involved in early mathematical knowledge at different developmental stages, with potential implications for the implementation of age-appropriate training interventions targeting specific WM skills before and after the onset of formal education.File | Dimensione | Formato | |
---|---|---|---|
The contributions of working memory domains and processes to early mathematical knowledge.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
946.75 kB
Formato
Adobe PDF
|
946.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.