A combined experimental and numerical study on the laminar-to-turbulent transition in microchannels using gas flow is presented. The effects of two geometric parameters, namely aspect ratio (height to width) of microchannels and inlet manifold shape, are considered on the value assumed by the critical Reynolds number linked to the laminar-to-turbulent transition. To study the effect of aspect ratio, seven rectangular microchannels having an aspect ratio between 0.25 and 1.04 are micro-milled in PMMA plastic with a constant length of 100 mm. Four rectangular microchannels with different inlet shapes, namely sudden contraction, rounded entrance, V shape and bellmouth, are fabricated to analyze the effects of inlet shape. Pressure loss analyses are then performed for all 11 microchannels by evaluating both average and semi-local friction factors. The Reynolds number in correspondence of which the transition takes place is determined by observing the trend of the friction factor. In parallel, numerical simulations using an intermittency-based transitional turbulence model are also performed and results are compared with the experiments. Experimental and numerical results have demonstrated that both of the investigated geometrical characteristics (aspect ratio and inlet manifold shape) play an important role on the range of the Reynolds number between the onset of transition and the onset of fully turbulent regime for gas microflows. Experimental critical Reynolds numbers show a good agreement with the predictions of the conventional theory and are in the range of 1863–3470 for all the tested microchannels. The role of gas compressibility on the laminar-to-turbulent transition is also discussed.
Rehman, D., Barattini, D., Hong, C., Morini, G.L. (2021). Effect of aspect ratio and inlet manifold shape on the laminar-to-turbulent transition of gas flow in rectangular microchannels. EXPERIMENTS IN FLUIDS, 62(3), 1-19 [10.1007/s00348-021-03137-3].
Effect of aspect ratio and inlet manifold shape on the laminar-to-turbulent transition of gas flow in rectangular microchannels
Rehman, Danish;Morini, Gian Luca
2021
Abstract
A combined experimental and numerical study on the laminar-to-turbulent transition in microchannels using gas flow is presented. The effects of two geometric parameters, namely aspect ratio (height to width) of microchannels and inlet manifold shape, are considered on the value assumed by the critical Reynolds number linked to the laminar-to-turbulent transition. To study the effect of aspect ratio, seven rectangular microchannels having an aspect ratio between 0.25 and 1.04 are micro-milled in PMMA plastic with a constant length of 100 mm. Four rectangular microchannels with different inlet shapes, namely sudden contraction, rounded entrance, V shape and bellmouth, are fabricated to analyze the effects of inlet shape. Pressure loss analyses are then performed for all 11 microchannels by evaluating both average and semi-local friction factors. The Reynolds number in correspondence of which the transition takes place is determined by observing the trend of the friction factor. In parallel, numerical simulations using an intermittency-based transitional turbulence model are also performed and results are compared with the experiments. Experimental and numerical results have demonstrated that both of the investigated geometrical characteristics (aspect ratio and inlet manifold shape) play an important role on the range of the Reynolds number between the onset of transition and the onset of fully turbulent regime for gas microflows. Experimental critical Reynolds numbers show a good agreement with the predictions of the conventional theory and are in the range of 1863–3470 for all the tested microchannels. The role of gas compressibility on the laminar-to-turbulent transition is also discussed.File | Dimensione | Formato | |
---|---|---|---|
EIF21.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
8.15 MB
Formato
Adobe PDF
|
8.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.