Let g be a complex simple Lie algebra. We consider subalgebras m which are Levi factors of parabolic subalgebras of g, or equivalently m is the centralizer of its center. We introduced the notion of admissible systems on finite order g-automorphisms θ , and show that θ has admissible systems if and only if its fixed point set is a Levi factor. We then use the extended Dynkin diagrams to characterize
Chuah, M., Fioresi, R. (2021). Levi Factors and Admissible Automorphisms. ALGEBRAS AND REPRESENTATION THEORY, 25, 341-358 [10.1007/s10468-020-10024-8].
Levi Factors and Admissible Automorphisms
Fioresi, Rita
Membro del Collaboration Group
2021
Abstract
Let g be a complex simple Lie algebra. We consider subalgebras m which are Levi factors of parabolic subalgebras of g, or equivalently m is the centralizer of its center. We introduced the notion of admissible systems on finite order g-automorphisms θ , and show that θ has admissible systems if and only if its fixed point set is a Levi factor. We then use the extended Dynkin diagrams to characterizeFile in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ART2021.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
9.75 kB
Formato
Adobe PDF
|
9.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.