Cardiac arrhythmia is a group of conditions in which falls changes in the heartbeat. Electrocardiography (ECG) is the most common tool used to identify a pathology in the cardiac electrical conduction system. ECG analysis is usually manually performed by an expert physician. However, manual interpretation is time-consuming and challenging even for cardiologists. Many automatic algorithms relying on handcrafted features and traditional machine learning classifiers were developed to recognize cardiac diseases. However, a large a priori knowledge about ECG signals is exploited. To overcome this main limitation and provide higher performance, recently, deep neural networks were designed and applied for 12-lead ECG classification. In this study, we designed decoding workflows based on three state-of-the-art architectures for time series classification. These were InceptionTime, ResNet and XResNet. Experiments were conducted using the training datasets provided during the PhysioNet/Computing in Cardiology Challenge 2020. The best-performing algorithm was based on InceptionTime, scoring a training 5-fold cross-validation challenge metric of 0.5183±0.0016, while using a low number of parameters (510491 in total). Thus, this algorithm provided the best compromise between performance and complexity.
Borra D., Andalo A., Severi S., Corsi C. (2020). On the Application of Convolutional Neural Networks for 12-lead ECG Multi-label Classification Using Datasets from Multiple Centers. IEEE Computer Society [10.22489/CinC.2020.349].
On the Application of Convolutional Neural Networks for 12-lead ECG Multi-label Classification Using Datasets from Multiple Centers
Borra D.;Severi S.;Corsi C.
2020
Abstract
Cardiac arrhythmia is a group of conditions in which falls changes in the heartbeat. Electrocardiography (ECG) is the most common tool used to identify a pathology in the cardiac electrical conduction system. ECG analysis is usually manually performed by an expert physician. However, manual interpretation is time-consuming and challenging even for cardiologists. Many automatic algorithms relying on handcrafted features and traditional machine learning classifiers were developed to recognize cardiac diseases. However, a large a priori knowledge about ECG signals is exploited. To overcome this main limitation and provide higher performance, recently, deep neural networks were designed and applied for 12-lead ECG classification. In this study, we designed decoding workflows based on three state-of-the-art architectures for time series classification. These were InceptionTime, ResNet and XResNet. Experiments were conducted using the training datasets provided during the PhysioNet/Computing in Cardiology Challenge 2020. The best-performing algorithm was based on InceptionTime, scoring a training 5-fold cross-validation challenge metric of 0.5183±0.0016, while using a low number of parameters (510491 in total). Thus, this algorithm provided the best compromise between performance and complexity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.