Our everyday interactions with pervasive systems generate traces that capture various aspects of human behavior and enable machine learning algorithms to extract latent information about users. In this paper, we propose a machine learning interpretability framework that enables users to understand how these generated traces violate their privacy.

Benjamin Baron, Mirco Musolesi (2020). Interpretable Machine Learning for Privacy-Preserving Pervasive Systems. IEEE PERVASIVE COMPUTING, 19(1), 73-82 [10.1109/MPRV.2019.2918540].

Interpretable Machine Learning for Privacy-Preserving Pervasive Systems

Mirco Musolesi
2020

Abstract

Our everyday interactions with pervasive systems generate traces that capture various aspects of human behavior and enable machine learning algorithms to extract latent information about users. In this paper, we propose a machine learning interpretability framework that enables users to understand how these generated traces violate their privacy.
2020
Benjamin Baron, Mirco Musolesi (2020). Interpretable Machine Learning for Privacy-Preserving Pervasive Systems. IEEE PERVASIVE COMPUTING, 19(1), 73-82 [10.1109/MPRV.2019.2918540].
Benjamin Baron; Mirco Musolesi
File in questo prodotto:
File Dimensione Formato  
1710.08464.pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 4.46 MB
Formato Adobe PDF
4.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/810194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact