The aim of this paper is to investigate the relations between Seifert manifolds and (1,1)-knots. In particular, we prove that every orientable Seifert manifold belonging to a certain class has a cylically presented fundamental group and it is the n-fold strongly-cyclic covering of a lens space branched over a (1,1)-knot.

L. Grasselli, M. Mulazzani (2009). Seifert manifolds and (1,1)-knots. SIBERIAN MATHEMATICAL JOURNAL, 50, 22-31 [10.1007/s11202-009-0003-x].

Seifert manifolds and (1,1)-knots

MULAZZANI, MICHELE
2009

Abstract

The aim of this paper is to investigate the relations between Seifert manifolds and (1,1)-knots. In particular, we prove that every orientable Seifert manifold belonging to a certain class has a cylically presented fundamental group and it is the n-fold strongly-cyclic covering of a lens space branched over a (1,1)-knot.
2009
L. Grasselli, M. Mulazzani (2009). Seifert manifolds and (1,1)-knots. SIBERIAN MATHEMATICAL JOURNAL, 50, 22-31 [10.1007/s11202-009-0003-x].
L. Grasselli; M. Mulazzani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/80698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact