Absolute abundance of fossils observed in cores and outcrops can be governed by extrinsic processes (e.g., net accumulation rates, intensity of taphonomic processes, post-mortem transport), intrinsic determinants of shell production rates (e.g., fecundity, spawning frequency, growth patterns), or some combination of those interdependent factors. Understanding the role of drivers of fossil abundance can enhance stratigraphic and biological interpretations of the fossil record. To assess the importance of extrinsic and intrinsic processes for fossil mollusks, we used a total of over 400 samples (each representing a 10-cm core interval and ∼0.375 dm3 of sediment) derived from 12 cores from the late Quaternary sedimentary succession of the Po basin (Italy). The results indicate that although extrinsic factors such as compaction, net accumulation rates, and sequence stratigraphic context are to some degree controlling mollusk abundance in the cores, they cannot account for extremely shell-rich deposits. The results suggest instead that shell-rich core intervals record, primarily, episodes of high shell production rates. First, samples with very high shell density (> 4000 specimens per dm3) were characterized by extremely low evenness reflecting dominance by one super-abundant species, typically a small r-selective species capable of an explosive population growth (Lentidium mediterraneum and Ecrobia ventrosa). Second, a taphonomic test supported further the biological (R-hardparts model) rather than sedimentological (R-sediment model) origin of very dense shell concentrations: the quality of shell preservation correlates positively with shell density as predicted by R-hardparts model. The results suggest that intervals of high abundance of mollusk shells in cores record intervals of high biological productivity driven by opportunistic shelly species from lower trophic levels. Integrative studies of facies architecture, sequence stratigraphy, and paleontological data can help to differentiate biologically and physically produced fossil concentrations thus allowing for more informed ecological interpretations of the fossil record.
Kowalewski, M., Nawrot, R., Scarponi, D., Azzarone, M. (2020). Determinants of Mollusk Abundance in Quaternary cores of Po Basin, Italy. GEOPHYSICAL RESEARCH ABSTRACTS, 2020, 1-1 [10.5194/egusphere-egu2020-21707].
Determinants of Mollusk Abundance in Quaternary cores of Po Basin, Italy
Scarponi, Daniele;Azzarone, Michele
2020
Abstract
Absolute abundance of fossils observed in cores and outcrops can be governed by extrinsic processes (e.g., net accumulation rates, intensity of taphonomic processes, post-mortem transport), intrinsic determinants of shell production rates (e.g., fecundity, spawning frequency, growth patterns), or some combination of those interdependent factors. Understanding the role of drivers of fossil abundance can enhance stratigraphic and biological interpretations of the fossil record. To assess the importance of extrinsic and intrinsic processes for fossil mollusks, we used a total of over 400 samples (each representing a 10-cm core interval and ∼0.375 dm3 of sediment) derived from 12 cores from the late Quaternary sedimentary succession of the Po basin (Italy). The results indicate that although extrinsic factors such as compaction, net accumulation rates, and sequence stratigraphic context are to some degree controlling mollusk abundance in the cores, they cannot account for extremely shell-rich deposits. The results suggest instead that shell-rich core intervals record, primarily, episodes of high shell production rates. First, samples with very high shell density (> 4000 specimens per dm3) were characterized by extremely low evenness reflecting dominance by one super-abundant species, typically a small r-selective species capable of an explosive population growth (Lentidium mediterraneum and Ecrobia ventrosa). Second, a taphonomic test supported further the biological (R-hardparts model) rather than sedimentological (R-sediment model) origin of very dense shell concentrations: the quality of shell preservation correlates positively with shell density as predicted by R-hardparts model. The results suggest that intervals of high abundance of mollusk shells in cores record intervals of high biological productivity driven by opportunistic shelly species from lower trophic levels. Integrative studies of facies architecture, sequence stratigraphy, and paleontological data can help to differentiate biologically and physically produced fossil concentrations thus allowing for more informed ecological interpretations of the fossil record.File | Dimensione | Formato | |
---|---|---|---|
EGU2020-21707-Kowalewski.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
313.24 kB
Formato
Adobe PDF
|
313.24 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.