We study stable reduction of curves in the case where a tamely ramified base extension is sufficient. If X is a smooth curve defined over the fraction field of a strictly henselian discrete valuation ring, there is a criterion, due to Saito, that describes precisely, in terms of the geometry of the minimal model with strict normal crossings of X, when a tamely ramified extension suffices in order for X to obtain stable reduction. For such curves we construct an explicit extension that realizes the stable reduction, and we furthermore show that this extension is minimal. We also obtain a new proof of Saito’s criterion, avoiding the use of l-adic cohomology and vanishing cycles.

HALLE L, (2010). Stable reduction of curves and tame ramification. MATHEMATISCHE ZEITSCHRIFT, 265, 529-550 [10.1007/s00209-009-0528-5].

Stable reduction of curves and tame ramification

HALLE L
2010

Abstract

We study stable reduction of curves in the case where a tamely ramified base extension is sufficient. If X is a smooth curve defined over the fraction field of a strictly henselian discrete valuation ring, there is a criterion, due to Saito, that describes precisely, in terms of the geometry of the minimal model with strict normal crossings of X, when a tamely ramified extension suffices in order for X to obtain stable reduction. For such curves we construct an explicit extension that realizes the stable reduction, and we furthermore show that this extension is minimal. We also obtain a new proof of Saito’s criterion, avoiding the use of l-adic cohomology and vanishing cycles.
2010
HALLE L, (2010). Stable reduction of curves and tame ramification. MATHEMATISCHE ZEITSCHRIFT, 265, 529-550 [10.1007/s00209-009-0528-5].
HALLE L,
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/806386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 9
social impact