Let X be a smooth curve defined over the fraction field K of a complete discrete valuation ring R. We study a natural filtration of the special fiber of the Néron model of the Jacobian of X by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for X over R, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus 1 and 2.

Halle L.H. (2010). Galois actions on Néron models of Jacobians. ANNALES DE L'INSTITUT FOURIER, 60(3), 853-903 [10.5802/aif.2541].

Galois actions on Néron models of Jacobians

Halle L. H.
2010

Abstract

Let X be a smooth curve defined over the fraction field K of a complete discrete valuation ring R. We study a natural filtration of the special fiber of the Néron model of the Jacobian of X by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for X over R, and in particular are independent of the residue characteristic. Furthermore, we obtain information about where these jumps occur. We also compute the jumps for each of the finitely many possible fiber types for curves of genus 1 and 2.
2010
Halle L.H. (2010). Galois actions on Néron models of Jacobians. ANNALES DE L'INSTITUT FOURIER, 60(3), 853-903 [10.5802/aif.2541].
Halle L.H.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/806332
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact