Intraoperative myocardial protection obtained with administration of cardioplegia is one of the crucial aspects that determine the success of modern cardiac surgical procedures. After the onset of “elective” ischemia a cascade of biochemical reactions starts: due to reduced oxygen availability contractile failure of the myocardium can be observed leading to a stimulation of anaerobic metabolism. Adenosine triphosphate (ATP) depletion and lactate accumulation eventually lead to myocardial acidosis and cause cell swelling and irreversible structural damage. In order to counteract these processes different compositions of cardioplegic solutions have been established in the past. They all aim to achieve a reversible electromechanical cardiac arrest and to protect the heart during surgery simultaneously. There is an ongoing discussion in the surgical community about the “best” cardioplegia although we can most probably only define an “optimized” one. The main target of any cardioplegic solution is the patient’s safety during the procedure but, with the knowledge that both types [either blood cardioplegia (BCP) or crystalloid cardioplegia (CCP)] are safe and effective for myocardial protection, it’s also the surgeon’s comfort that needs to be considered.
Angeli E., Lueck S., Gargiulo G.D. (2018). Different strategies of myocardial protection: The age of perfectionism. JOURNAL OF THORACIC DISEASE, 10(3), 1211-1213 [10.21037/jtd.2018.02.37].
Different strategies of myocardial protection: The age of perfectionism
Gargiulo G. D.
2018
Abstract
Intraoperative myocardial protection obtained with administration of cardioplegia is one of the crucial aspects that determine the success of modern cardiac surgical procedures. After the onset of “elective” ischemia a cascade of biochemical reactions starts: due to reduced oxygen availability contractile failure of the myocardium can be observed leading to a stimulation of anaerobic metabolism. Adenosine triphosphate (ATP) depletion and lactate accumulation eventually lead to myocardial acidosis and cause cell swelling and irreversible structural damage. In order to counteract these processes different compositions of cardioplegic solutions have been established in the past. They all aim to achieve a reversible electromechanical cardiac arrest and to protect the heart during surgery simultaneously. There is an ongoing discussion in the surgical community about the “best” cardioplegia although we can most probably only define an “optimized” one. The main target of any cardioplegic solution is the patient’s safety during the procedure but, with the knowledge that both types [either blood cardioplegia (BCP) or crystalloid cardioplegia (CCP)] are safe and effective for myocardial protection, it’s also the surgeon’s comfort that needs to be considered.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.