A PTFE latex, with particles in the submicrometer size range, was employed as seed in the emulsifier-free emulsion copolymerization of two mixtures of acrylic and methacrylic comonomers to obtain PTFE-based core-soft shell nanoparticles. Stable latexes were obtained. By appropriately choosing the ratio between the comonomers and the PTFE seed in the reaction mixture, it was possible to obtain particles with various sizes and a narrow size distribution. The shell is swollen in water due to the presence of the ionic methacrylic acid units. A fractionated-type crystallization phenomenon of the PTFE component was observed and is ascribed to the small size of the PTFE material. The low glass transition temperatures of the shell forming materials could permit the preparation of soft matrix nanostructured films by latex deposition and water evaporation.

K. Sparnacci, D. Antonioli, S. Deregibus, M. Laus, T. Poggio, V. Kapeliouchko, et al. (2009). PTFE-Based Core-Soft Shell Nanospheres and Soft Matrix Nanocomposites. MACROMOLECULES, 42, 3518-3524 [10.1021/ma802871y].

PTFE-Based Core-Soft Shell Nanospheres and Soft Matrix Nanocomposites

ZUCCHERI, GIAMPAOLO;PASSERI, ROSITA
2009

Abstract

A PTFE latex, with particles in the submicrometer size range, was employed as seed in the emulsifier-free emulsion copolymerization of two mixtures of acrylic and methacrylic comonomers to obtain PTFE-based core-soft shell nanoparticles. Stable latexes were obtained. By appropriately choosing the ratio between the comonomers and the PTFE seed in the reaction mixture, it was possible to obtain particles with various sizes and a narrow size distribution. The shell is swollen in water due to the presence of the ionic methacrylic acid units. A fractionated-type crystallization phenomenon of the PTFE component was observed and is ascribed to the small size of the PTFE material. The low glass transition temperatures of the shell forming materials could permit the preparation of soft matrix nanostructured films by latex deposition and water evaporation.
2009
K. Sparnacci, D. Antonioli, S. Deregibus, M. Laus, T. Poggio, V. Kapeliouchko, et al. (2009). PTFE-Based Core-Soft Shell Nanospheres and Soft Matrix Nanocomposites. MACROMOLECULES, 42, 3518-3524 [10.1021/ma802871y].
K. Sparnacci; D. Antonioli; S. Deregibus; M. Laus; T. Poggio; V. Kapeliouchko; G. Palamone; G. Zuccheri; R. Passeri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/80583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact