Fibroblast Growth Factor 21 (FGF21), Growth Differentiation Factor 15 (GDF15), and Humanin (HN) are mitochondrial stress-related mitokines, whose role in health and disease is still debated. In this study, we confirmed that their plasma levels are positively correlated with age in healthy subjects. However, when looking at patients with type 2 diabetes (T2D) or Alzheimer's disease (AD), two age-related diseases sharing a mitochondrial impairment, we found that GDF15 is elevated in T2D but not in AD and represents a risk factor for T2D complications, while FGF21 and HN are lower in AD but not in T2D. Moreover, FGF21 reaches the highest levels in centenarian' offspring, a model of successful aging. As a whole, these data indicate that (i) the adaptive mitokine response observed in healthy aging is lost in age-related diseases, (ii) a common expression pattern of mitokines does not emerge in T2D and AD, suggesting an unpredicted complexity and disease-specificity, and (iii) FGF21 emerges as a candidate marker of healthy aging.
Conte M, S.J. (2021). Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging. GEROSCIENCE, 43, 985-1001 [10.1007/s11357-020-00287-w].
Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer's disease in comparison with healthy aging
Conte M;Chiariello A;Martucci M;Santoro A;Franceschi C;Salvioli S
2021
Abstract
Fibroblast Growth Factor 21 (FGF21), Growth Differentiation Factor 15 (GDF15), and Humanin (HN) are mitochondrial stress-related mitokines, whose role in health and disease is still debated. In this study, we confirmed that their plasma levels are positively correlated with age in healthy subjects. However, when looking at patients with type 2 diabetes (T2D) or Alzheimer's disease (AD), two age-related diseases sharing a mitochondrial impairment, we found that GDF15 is elevated in T2D but not in AD and represents a risk factor for T2D complications, while FGF21 and HN are lower in AD but not in T2D. Moreover, FGF21 reaches the highest levels in centenarian' offspring, a model of successful aging. As a whole, these data indicate that (i) the adaptive mitokine response observed in healthy aging is lost in age-related diseases, (ii) a common expression pattern of mitokines does not emerge in T2D and AD, suggesting an unpredicted complexity and disease-specificity, and (iii) FGF21 emerges as a candidate marker of healthy aging.File | Dimensione | Formato | |
---|---|---|---|
11357_2020_Article_287.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
4.79 MB
Formato
Adobe PDF
|
4.79 MB | Adobe PDF | Visualizza/Apri |
11357_2020_287_MOESM1_ESM.docx
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione
17.64 kB
Formato
Microsoft Word XML
|
17.64 kB | Microsoft Word XML | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.