What happens in forecasting problems when high frequency and high spatial detail data encounter significant publication delays? In this paper, we consider a monthly dynamic panel data model, augmented by Google Trends search query volume data, for tourism demand forecasting at high spatial detail, in which one of the main aspects is represented by a publication delay ranging from 8 to 15 months. Some findings in the tourism literature already specify forecasting/nowcasting applications considering a realistic time delay but not for more than 3 months.

High spatial and temporal detail in timely prediction of tourism demand

Silvia Emili;Attilio Gardini;
2020

Abstract

What happens in forecasting problems when high frequency and high spatial detail data encounter significant publication delays? In this paper, we consider a monthly dynamic panel data model, augmented by Google Trends search query volume data, for tourism demand forecasting at high spatial detail, in which one of the main aspects is represented by a publication delay ranging from 8 to 15 months. Some findings in the tourism literature already specify forecasting/nowcasting applications considering a realistic time delay but not for more than 3 months.
Silvia Emili; Attilio Gardini; Enrico Foscolo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/805575
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact