A numerical investigation is conducted in order to identify a PID control loop feedback scheme able to return dynamics augmentation and superior seakeeping characteristics in the application of high speed flying yacht hulls. An existing lumped parameters model based on general unsteady equations of motion is extended and implemented in combination with a regular basic ocean waves model, to conduct parametric studies and predict the overall performances of a specific engine-propelled flying yacht hull, both in calm and rough water conditions. The unsteady behavior of six foiling/maneuvering appendages is investigated, the hydrodynamic characteristics being based on a database generated through the use of computational fluid dynamics methods (CFD) coupled with static/dynamic-mesh schemes. Equations of motion and hydrodynamics are solved numerically by explicit time-integration method. By comparison with control open-loop conditions, the results show the effects of the use of PID controllers in such dynamic systems in terms of seakeeping performances and dynamics augmentation.

Amoroso, C.L., Liverani, A., Francia, D., Ceruti, A. (2021). Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages. OCEAN ENGINEERING, 221, 1-13 [10.1016/j.oceaneng.2020.108115].

Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages

Amoroso C. L.
;
Liverani A.;Francia D.;Ceruti A.
2021

Abstract

A numerical investigation is conducted in order to identify a PID control loop feedback scheme able to return dynamics augmentation and superior seakeeping characteristics in the application of high speed flying yacht hulls. An existing lumped parameters model based on general unsteady equations of motion is extended and implemented in combination with a regular basic ocean waves model, to conduct parametric studies and predict the overall performances of a specific engine-propelled flying yacht hull, both in calm and rough water conditions. The unsteady behavior of six foiling/maneuvering appendages is investigated, the hydrodynamic characteristics being based on a database generated through the use of computational fluid dynamics methods (CFD) coupled with static/dynamic-mesh schemes. Equations of motion and hydrodynamics are solved numerically by explicit time-integration method. By comparison with control open-loop conditions, the results show the effects of the use of PID controllers in such dynamic systems in terms of seakeeping performances and dynamics augmentation.
2021
Amoroso, C.L., Liverani, A., Francia, D., Ceruti, A. (2021). Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages. OCEAN ENGINEERING, 221, 1-13 [10.1016/j.oceaneng.2020.108115].
Amoroso, C. L.; Liverani, A.; Francia, D.; Ceruti, A.
File in questo prodotto:
File Dimensione Formato  
PP Dynamics Augmentation for High Speed.pdf

Open Access dal 03/01/2023

Tipo: Postprint
Licenza: Creative commons
Dimensione 14.58 MB
Formato Adobe PDF
14.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/805417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact