A numerical investigation is conducted in order to identify a PID control loop feedback scheme able to return dynamics augmentation and superior seakeeping characteristics in the application of high speed flying yacht hulls. An existing lumped parameters model based on general unsteady equations of motion is extended and implemented in combination with a regular basic ocean waves model, to conduct parametric studies and predict the overall performances of a specific engine-propelled flying yacht hull, both in calm and rough water conditions. The unsteady behavior of six foiling/maneuvering appendages is investigated, the hydrodynamic characteristics being based on a database generated through the use of computational fluid dynamics methods (CFD) coupled with static/dynamic-mesh schemes. Equations of motion and hydrodynamics are solved numerically by explicit time-integration method. By comparison with control open-loop conditions, the results show the effects of the use of PID controllers in such dynamic systems in terms of seakeeping performances and dynamics augmentation.

Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages / Amoroso C.L.; Liverani A.; Francia D.; Ceruti A.. - In: OCEAN ENGINEERING. - ISSN 0029-8018. - ELETTRONICO. - 221:(2021), pp. 108115.108115-108115.108127. [10.1016/j.oceaneng.2020.108115]

Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages

Amoroso C. L.
;
Liverani A.;Francia D.;Ceruti A.
2021

Abstract

A numerical investigation is conducted in order to identify a PID control loop feedback scheme able to return dynamics augmentation and superior seakeeping characteristics in the application of high speed flying yacht hulls. An existing lumped parameters model based on general unsteady equations of motion is extended and implemented in combination with a regular basic ocean waves model, to conduct parametric studies and predict the overall performances of a specific engine-propelled flying yacht hull, both in calm and rough water conditions. The unsteady behavior of six foiling/maneuvering appendages is investigated, the hydrodynamic characteristics being based on a database generated through the use of computational fluid dynamics methods (CFD) coupled with static/dynamic-mesh schemes. Equations of motion and hydrodynamics are solved numerically by explicit time-integration method. By comparison with control open-loop conditions, the results show the effects of the use of PID controllers in such dynamic systems in terms of seakeeping performances and dynamics augmentation.
2021
Dynamics augmentation for high speed flying yacht hulls through PID control of foiling appendages / Amoroso C.L.; Liverani A.; Francia D.; Ceruti A.. - In: OCEAN ENGINEERING. - ISSN 0029-8018. - ELETTRONICO. - 221:(2021), pp. 108115.108115-108115.108127. [10.1016/j.oceaneng.2020.108115]
Amoroso C.L.; Liverani A.; Francia D.; Ceruti A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/805417
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact