The perovskite NaOsO3 has a metal–insulator transition at temperature 410 K, which is delicate, intriguing, and provokes a lot of debate on its nature. Our combined electrical resistance, Raman, and synchrotron x-ray diffraction experiments show that the insulating ground state in this osmate endures under high pressure up to at least 35 GPa. In this pressure range, compression reveals hidden hysteretic resistance properties with a transient metallic state near 200 K, manifested three electronic character anomalies (at 1.7, 9.0, and 25.5 GPa), and a structural transition to the singular polar phase (at ~18 GPa). We distinguish NaOsO3 from the regular crystallographic behavior of perovskites, though the electrical specificities resemble iridates and nickelates. The theoretical first-principle band structure and lattice dynamics calculations demonstrate that the magnetically itinerant Lifshitz-type mechanism with spin–orbit and spin–phonon interactions is responsible for these pressure-induced changes. Our findings provide another new playground for the emergence of new states in 5d materials by using high-pressure methods.

Sereika R., Liu P., Kim B., Kim S., Zhang J., Chen B., et al. (2020). Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3. NPJ QUANTUM MATERIALS, 5(1), 1-8 [10.1038/s41535-020-00269-3].

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3

Franchini C.
Penultimo
Supervision
;
2020

Abstract

The perovskite NaOsO3 has a metal–insulator transition at temperature 410 K, which is delicate, intriguing, and provokes a lot of debate on its nature. Our combined electrical resistance, Raman, and synchrotron x-ray diffraction experiments show that the insulating ground state in this osmate endures under high pressure up to at least 35 GPa. In this pressure range, compression reveals hidden hysteretic resistance properties with a transient metallic state near 200 K, manifested three electronic character anomalies (at 1.7, 9.0, and 25.5 GPa), and a structural transition to the singular polar phase (at ~18 GPa). We distinguish NaOsO3 from the regular crystallographic behavior of perovskites, though the electrical specificities resemble iridates and nickelates. The theoretical first-principle band structure and lattice dynamics calculations demonstrate that the magnetically itinerant Lifshitz-type mechanism with spin–orbit and spin–phonon interactions is responsible for these pressure-induced changes. Our findings provide another new playground for the emergence of new states in 5d materials by using high-pressure methods.
2020
Sereika R., Liu P., Kim B., Kim S., Zhang J., Chen B., et al. (2020). Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3. NPJ QUANTUM MATERIALS, 5(1), 1-8 [10.1038/s41535-020-00269-3].
Sereika R.; Liu P.; Kim B.; Kim S.; Zhang J.; Chen B.; Yamaura K.; Park C.; Franchini C.; Ding Y.; Mao H.-K.
File in questo prodotto:
File Dimensione Formato  
PUBLISHED_Sereika_et_al-2020-npj_Quantum_Materials.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/804765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact