The rate of convergence of random sums, with respect to total variation distance, is investigated for an exchangeable sequence $(X_n)$ of real random variables and a sequence $(T_n)$ of random indices, with $(T_n)$ independent of $(X_n)$.

Pratelli Luca, Rigo Pietro (2021). Convergence in total variation of random sums. MATHEMATICS, 9(2), 1-11 [10.3390/math9020194].

Convergence in total variation of random sums

Rigo Pietro
2021

Abstract

The rate of convergence of random sums, with respect to total variation distance, is investigated for an exchangeable sequence $(X_n)$ of real random variables and a sequence $(T_n)$ of random indices, with $(T_n)$ independent of $(X_n)$.
2021
Pratelli Luca, Rigo Pietro (2021). Convergence in total variation of random sums. MATHEMATICS, 9(2), 1-11 [10.3390/math9020194].
Pratelli Luca; Rigo Pietro
File in questo prodotto:
File Dimensione Formato  
mathematics-09-00194.pdf

accesso aperto

Descrizione: pdf editoriale
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 265.08 kB
Formato Adobe PDF
265.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/804500
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact