The rate of convergence of random sums, with respect to total variation distance, is investigated for an exchangeable sequence $(X_n)$ of real random variables and a sequence $(T_n)$ of random indices, with $(T_n)$ independent of $(X_n)$.
Pratelli Luca, Rigo Pietro (2021). Convergence in total variation of random sums. MATHEMATICS, 9(2), 1-11 [10.3390/math9020194].
Convergence in total variation of random sums
Rigo Pietro
2021
Abstract
The rate of convergence of random sums, with respect to total variation distance, is investigated for an exchangeable sequence $(X_n)$ of real random variables and a sequence $(T_n)$ of random indices, with $(T_n)$ independent of $(X_n)$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mathematics-09-00194.pdf
accesso aperto
Descrizione: pdf editoriale
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
265.08 kB
Formato
Adobe PDF
|
265.08 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.